Elecronic circuit - I (ECE2101)

Group Assignment (Group of 5 students maximum, Due date: 26/04/2023)

1. For the circuit shown below in Figure 1, Calculate I_B , I_C , I_E and V_{CE}

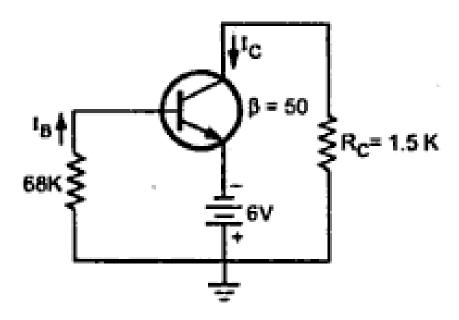


Figure 1

- 2. Draw the circuit diagram of a collector-base bias circuit of common base (CB) and (CC), and derive expression of both input and output analysis
- 3. In the circuit shown in Figure 2 find I_C when $V_{CB} = 8V$ and V_{CB} when $I_C = 2mA$

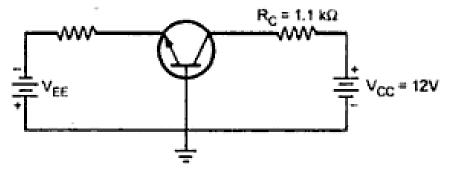


Figure 2

4. In the circuit shown below in Figure 3, calculate I_B , I_C and V_{CE}

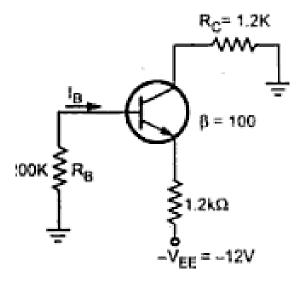
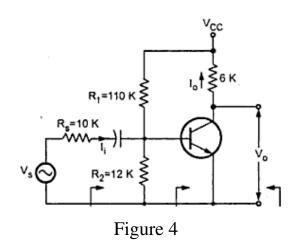



Figure 3

- 5. Using the approximate h-parameter model, obtain the expression for a CB and CC circuit for A_i , Z_i , A_V and Z_0 .
- 6. The transister amplifier shown in Figure 4 uses a transistor whose h-paramets as follows: $h_i = 1.2K\Omega$, $h_f = 75$, $h_0 = 25 \times 10^{-6}\Omega$. Calculate A_i , A_v , Z_{in} and Z_o

7. In the circuit shown below in Figure 5, Calculate V_{GSQ} , I_{DQ} V_{DSQ} and V_D

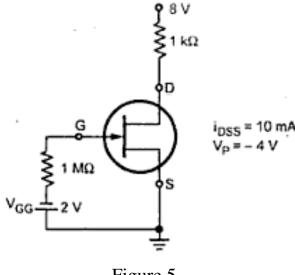


Figure 5

- 8. Derive the expression for A_V , Z_i and Z_o of a JFET source follower.
- 9. For the amplifier shown in Figure 6, calculate A_v , Z_i , Z_o . Assume for FET $g_m=2mA/V$, $r_d=10K\Omega$

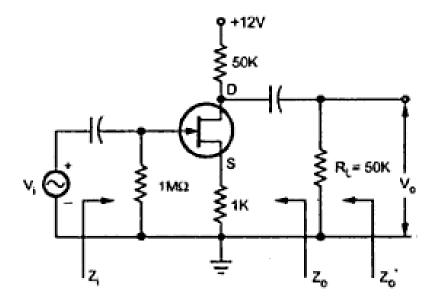


Figure 6